Environmental Aware Form Finding

Type:

Research Project

Location:

University of Southern California / School of Architecture

Collaborators:

Prof. David J. Gerber

Keywords:

Agent Based Modelling and Simulation, Form Finding, Shell Design, Reciprocal Frames

Date:

2016

Status:

Completed

Description: This work investigated an integrated workflow for interactive design of shell structures, which couples structural and environmental analysis through a multi-agent systems (MAS) for design. The work lies at the intersection of architecture, engineering and computer science research, incorporating generative design with analytical techniques. A brief review on architectural shell structures and the structural logic of reciprocal frames is described. Through the morphological study of reciprocal frames locally we seek to inform the behavior of a MAS, which integrates form-finding techniques, with daylight factor analysis (DFA) and finite element analysis (FEA) on a global configuration. An experimental design is developed in order to explore the solution space of large span free form shells with varying topologies and boundary conditions, as well as identify the relationships between local design parameters of the reciprocal frames (i.e. number of elements, profile) and the analyses (i.e. stress distribution, solar radiation) for enabling the generation of different global design alternatives.

The research improves upon design decision-making latency and certainty through harnessing geometric complexity and structural form finding for early stage design. Additionally, the research improves upon design outcomes by establishing a feedback loop between design generation, analysis and performance.